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We prove that if a function IE C[O, 1] changes sign finitely many times, then for
any n large enough the degree of copositive approximation to / by quadratic
spliners with n - I equally spaced knots can be estimated by Cw 2(f, I/n), where C
is an absolute constant. We also show that the degree of copositive polynomial
approximation to IE C I [0, I] can be estimated by Cn IW ,(/', I/n), where the con
stant C depends only on the number and position of the points of sign change. This
improves the results of Leviatan (1983, Proc. Amer. Malh. Soc. 88, 101-105) and
Yu (1989, Chinese Ann. Alath. 10, 409--415), who assumed that for some r~ I,
I"EC'[O, I]. In addition, the estimates involved Cn-'w(p", lin) and the constant
C dependended on the behavior of I in the neighborhood of those points. One
application of the results is a new proof to our previous W 2 estimate of the degree
of copositive polynomia approximation of.r E C[O, I], and another shows that the
degree of copositive spline approximation cannot reach W4, just as in the case of
polynomials. (" 1995 AcademIC Press. Inc.

1. INTRODUCTION AND MAIN RESULTS

Let C[O, t] be the space of r times continuously differentiable functions
on [0, t], and let C[O, I] be the space of continuous functions. Let
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f E C [0, 1]; then denote by 11·11 the uniform norm taken over [0, 1] and by
w,Cf, t) the usual rth modulus of smoothness of f

We say that f(x) changes sign at Y E (0, 1) if f(Y) = 0 and if for some
small e>O, '1f(x)~O, if y-e<x< y, and '1f(x)::;:;O, if y<x< y+e, where
'1 = ± 1. Such a ,v is called a point of sign change of f We will assume that
I has finitely many, say k, sign changes in [0, 1]. However, one should
note that we do not exclude the possibility that I vanishes in some subin
terval in which we mayor may not designate (weak) sign changes. If I
vanishes in [a, b] and y E (a, b) is a point of sign change, then for suf
ficiently small e, [y - [;, Y+ e] c [a, b] and contains no other point of sign
change. Then we will write sgn(f(x)) := 1'/ sgn(x - y) for x E [y - e, Y + [;].
Our purpose is to estimate the degree of approximation of functions
IE C[O, 1], by means of polynomials Pn and splines Sn' which are copositive
with f, i.e., polynomials Pn and splines Sn, which are nonnegative where I
is and nonpositive where I is. If I does not vanish in any subinterval, then
this is obviously characterized by I(x) Pn(x) ~ 0 and I(x) sn(x) ~ 0
throughout [0, 1]. While the degree of nonnegative spline approximation
to a nonnegative function is of the same order as the best spline
approximation, to the best of our knowledge, nothing is known about the
degree of copositive spline approximation to a function that changes its
sign even once. Our first result gives an estimate on copositive spline
approximation.

THEOREM 1. Let IE C[O, 1] change its sign k times at 0 < YI <
Y2 < ... < Yk < 1, and let c5 := minI ';;;j';;;k-I(YJ+ 1- Yj) if k ~ 2 and c5 := 4 if
k = 1. Then lor each n ~ 40 - 1, there exists a quadratic spline Sn Ivith n - 1
equally spaced interior knots which is copositive with f, such that

(1.1 )

where C is an absolute constant.

Our next result is concerned with copositive polynomial approximation
to a function IEC[O, 1]. Leviatan [iev] (for r::;:;2) and Yu [yu] (for
r> 2) have shown that for any positive integer r, if IE C[O, 1], and n is
sufficiently large, then there exists a polynomial Pn copositive with I such
that III - Pnll ::;:; Cn-'w(f('I, lin), where C depends on the set of all points
of sign change of f. But how large n should be depends on the behavior of
I and its derivatives near those points of sign change. This dependency on
I is unsatisfactory, and it turns out to be unnecessary. To see this we have
the next result, which is stronger in that it merely assumes IE C I and the
estimates involve the moduli of smoothness of f', with explicit description
of the constants and the size of n.

640 R02-h



206 HU, LEVIATAN, AND YU

THEOREM 2. Let f E C 1[0, 1], change its sign k times at 0 < Y 1 <
Y2< ... <Yk<l, and let 6:=mino~j~k(Yi+l-y;l, lvhere Yo:=O and
Yk + I := 1. Then for any r ~ t, there are positive constants C 1 = C I (k, r) and
C2 = C2(k, r, b), such that for each n> C l b I, there exists a polynomial P"
of degree ~ n which is copositive with f and satisfies

(1.2)

Remark. Note that while in Theorem t, 6 depends only upon the dis
tance between the points of sign change, in Theorem 2, it depends also on
their distance from the endpoints of the interval.

The more precise description of the size n enables us to apply results
back and forth between copositive approximation by splines and that by
polynomials. This is illustrated in the proof of the Theorem A and in an
application of Theorm B cited below. We start with a new proof of a result
from our previous paper [hly], namely,

THEOREM A. Let fEC[O,I] change its sign k times at O<Yl<
Y2<···<Yk<1. Let 6:=mino~j";k(Yi+l-Yi)' where Yo:=O and
}'k + l := 1. Then there are positive constants C 1 = C1(k) and C2 = C2(k, 6)
such that for each n> C 1 6 - l, there exists a polynomial P" of degree ~ n
which is compositive with f and satisfres

Proof Take the spline s" obtained in Theorem 1. Then (1. t) yields

w 2(s", lin) ~ CW2Cf, lin).

But by Yu and Zhou [yz], if s" E Y'(m + I, n), where for a nonnegative
integer m, ,'/'(m + 1, n) denotes the collection of splines of order m + 1 (i.e.,
piecewise polynomials of degree m in cm

- 1[0, 1]) on the partition
T:= {iln};'~o' then

(t.3 )

Hence

and we can apply Theorem 2 with r = 1 to Sn to obtain the desired polyno
mial. One should emphasize that we have to fix the value of n - the number
of knots of s" and the degree of P", simultaneously; of all of this before
applying Theorem 1. This prohibits the dependency of n on the behavior of
s" in the second step. I
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The following negative result by Songping Zhou [zhou] demonstrates
that it is impossible to approximate a general function f by copositive
polynomials at a rate of W4 even if this f has a continuous derivative and
changes its sign only once in [0, I].

THEOREM B. There is a function f E C 1[0, 1] which changes its sign once
in [0, I] and such that

where E~ol(f) is the error of the best copositive approximation to f by
polynomials of degree ~ n.

Applying Theorems 2 and B one can readily prove by contradiction that
it is impossible to achieve the degree W 4 for copositive approximation to a
general function f E C[O, 1] by splines SEC' [0, 1], with n - 1 interior
knots (not necessarily equally spaced) such that for some positive r

For splines with equally spaced knots, we can be more explicit, namely,

THEOREM 3. There is afunction f E C t [0, 1] which changes its sign once
in [0, 1], such that for any sequence of splines SrI E Y'(m + 1, n), which are
copositive with f, we have

(1.4 )

Proof. If (1.4) fails, then there is a sequence of splines s" E //(m + 1, n),
n = 1, 2, ..., copositive with f and such that

(1.5 )

hence

(1.6)

Now (1.3) together with (1.6) and Theorem 2 contradicts Theorem B. Note
that the degree of approximation of f by splines of order ~ 3 is, in general
not better than w) so that (1.5) necessarily implies that s" is at least
cubic. I
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In fact, Theorems 2 and B show that this type of controlled approxima
tion is impossible even for a much larger class of functions, as stated in
Theorem 4 below. We will omit the details of the proof.

THEOREM 4. There is a function fEe 1[0, 1] which changes its sign once
in [0, 1], such that

for any r;:;' 1 and any sequence offunctions g" Eel [0, 1] that are copositive
with f In particular taking g" := j; n = 1, 2, ... , lve see that for this f we have

I
. wr(f', lin)
1m sup = w.
"_'Fe nw4(f, lin)

We should point out that there is an obvious gap between the affirmative
and negative results, which we are not able to bridge at this stage.

We prove Theorem 1 in Section 2 and Theorem 2 in Section 3.

2. COPOSITIVE SPLINES

In this section we will express the splines as series of B-splines and in
particular we will use the Schoenberg-Bernstein variation diminishing
operator. For any n > 0, let II := lin, x _2 := x 1:= 0, x;:= ill, i = 0, ..., n,
X,,+I :=X,,+2:= I, and

(2.1 )

Then {Ni.3}7':~2 forms a basis for all quadratic splines on [0,1] with knot
sequence T, where

Ni.m(x) := (x i+m - Xi)[X i, ..., x;+m](' - x)"; - 1

are the B-splines of order m on T. Here, [Xi' ... , X;+m] g(.) denotes the mth
order divided difference of g. We define J i := [x;, X i + I] and set

{

xo,
_ X;+X;+l

X i := 2 = x;+0.511,

X n ,

i= -I

i= 0, ..., n-l

i=n

(2.2)
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to be the knot averages. Since the interior knots are equally spaced, we also
have

i=O, ... , n - 2. (2.3 )

In addition to well known facts about general B-splines, we will need
the following specific properties about the B-splines N;.3 (see, e.g., [sch],
[dev-Ior] ).

For i = 0, ..., n - 3, No is symmetric about the line x = .i:;+ l'

increasing on the left and decreasing on the right. It assumes
kat.x i and ,X;+2' ~ at x i + I and X,+2' and the maximum value
~ at the center .X i + 1 of its support [Xi' X; + 3]. It is convex on
J i and J i + 2 and concave on J i + I' (2.4.1 )

The Schoenberg-Bernstein operator ST is given by

fl -- I

STC{, x):= I !(.x, + tl N i•3(X).
i= -2

(2.4.2 )

(2.4.3)

(2.5 )

Denote 5 := ST(f); then by (2.4.3) we have

{

!(XO),

5(X,) = (f(.X;) +!(.X; tl)/2,

!(X/I),

i=O

i = 1, ... , n - 1

i= n.

(2.6 )

Recalling the differentiation formula for B-splines,

d ( ) ('.-c 1
-d- LC,N,.m(x) =(m-l)L ' '=- _N,.m_l(X),

oX i jXj+m-1 ~Xi

we obtain
/1-1

(2.7)

(2.8 )
i= ---I

with

i = - I, ..., n - 1. (2.9 )
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Note that
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i=O, ..., n, (2.10)

since N1 _ l,2(.',) equals I for j= i and equals 0 for other j. The points
Pi(.Xi,f(xJ), i= -1, ..., n, on the graph off totally determine the graph of
.~ and are called the control points of ,~ [dev-Ior]. In terms of the control
points, (2.6) and (2.10) can be geometrically restated as: for each i = 0, .oo, n,
the line segment P, 1 Pi is tangent to the graph of s at x = x,.

We now give the proof of Theorem 1, throughout which we denote by
C an absolute constant which may be different on different occurrences,
even in the same line, and for the sake of brevity, we denote W2(f, I/n)
by W2'

Proof of Theorem 1. We fix n? 4/15 and we apply the Schoenberg
Bernstein operator ST to f to obtain the quadratic spline .~ on T given in
(2.5). It is known [dev-lorJ that

Ilf -sll:::; Cw 2 · (2.11 )

Let I i :== (Xi' .X,+ IJ, i= -I, .oo, n-1. We call I p contaminated if xp < Yi:::;
.xp + 1 for some j. Since n? 4/15, there is exactly one Yj in each contaminated
interval. Moreover, if II' and /, are any two consecutive contaminated inter
vals, then

-I :::;p<p+4:::;I:::;n-l; (2.12)

that is, the distance between them is at least 311. For any XE [xp + 2 , x,J,

n I I 1

S(x)= L: !(.xi+dNO(x)== L: f(.x,+I) NdX ) (2.13)
i= -2 i=p

has the same sign as f, since! does not change sign on [Xp + 1, .xiJ.
Similarly, ,~ has the same sign as ! on [xo, xpJ if I p is the first con
taminated interval and p#- -1, and on [Xp +2,Xn J if I p is the last such
interval and p #- n - 1. This means .~ may have the wrong sign only near a
point of sign change.

We are ready to modify s so that the resulting spline s should be
copositive with f, on the whole interval [0, I]. Let Yj be any of the points
of sign change, and I p be the contaminated interval containing Yj' We may
have to correct the sign of s near Yj; thus we add to it a correction function

mj(x) :== €O!N(x), (2.14)

where €:= -s()'), N is a translation of N O• 3 (restricted to [0, 1] if
necessary) to be prescribed later, and 'Y. := I/N(Yj) > O. The support of any
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correction function contains the corresponding contaminated interval in its
interior and extends beyond it by no more than 1.517 on each side. There
fore, by (2.12), the interiors of the supports of the correction functions
m

J
, j = 1, ..., k, are mutually disjoint. This anables us to define s by

{
S(X) + mj(x),

s(x)=
s(x),

if x is in the support of some m,
otherwise.

(2.15 )

For each point of sign change Y1 , we have

s(y.)
s( v·) = s( v·) +m.( v·) =.i'( V·) __I- N( v) = 0 = f( v)

. I • I J • I . I N( Yi) . I • I '
(2.16 )

and it is obvious that in order to conclude that s is compositive with j; we
only have to show that they are copositive in the supports of the various
m/s. We will assume that in I p , f~O to the left of J'j. and that f~O to
the right. The proof in the other case follows by replacing f by - f The
modification is done in the following five cases.

Case 1. p = -1 and s( Yi) ~ O. Recall I _I = (.x _I' i o] = (xo, .xoJ. We take
N(x) := N O•3(x + 217) restricted to [0, 1J. Note I: = -.i'(y,) ~ O. By (2.4.1), mi
is decreasing on its support Jo=[xo,x,], and N(xo)=!>N(J't)~

N(.x o ) = L thus 2 < (l ,,;;; 8. By (2.6) we have

s(xo)= s(xo)+ mj(xo) ~ f(.\'o) ~ 0,

_ f(i'o)+fUIl
s(xtl=s(xtl+mi(x j )= 2 ~O.

Since s is a parabola on Jo, these together with (2.16) guarantee that s is
copositive with f on that interval.

Case 2. p = -1 and s(l}l> O. In this case I: = -s(Yj) < O. We take
N(x) := N O•3(x + h) restricted to [0, 1J. The monotonicity of N on [xo, .xo]
gives ~ ~.O( < 2. We need to show that sand fare copositive on [xo, X2],
the support on mj' It is trivial to do so on J 1 = [x" x 2 ], since by (2.13),
.i' ~ 0 and so are m i and f In particular, s(x I) ~ O.

Since by assumption, f(xo) ~ 0 and f(5(o) ~ 0, we have

By (2.4.1) we also have m;(xo)~O, thus s'(xo)~O. since s is a parabola on
Jo with s'(xo)~O, s(Yj)=O, and s(xl),,;;;O, one can readily see that s is also
copositive with f on J o.
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Case 3. p = n - I. The proof follows from Cases 1 and 2 by replacing
I(x) by -I(I-x).

Case 4. 0 ~ p ~ n - 2, .~(YJ ~ O. We will again take full advantage of the
fact that S is a parabola on each interval J,. This time we use N := N p - 1.3'

Note that <: = -.~Lvj) ~ 0 and 1< IX ~ 8. We need to show that s and I are
copositive on [xl' I' X p +2]. This is obvious on JI' 1 since .~, nIi , and I are
all nonnegative. (This is still true even if p = 0, although J _ 1 only consists
of a single point.)

For the interval Jp + " we claim that both .~ and s = S + nIj are either con
vex or decreasing there. We only need to show this for s because m j is both
convex and decreasing in Jp + I' Indeed, since .r is linear on this interval, by
(2.10), sis coconvex with the broken line PpPp+IPp+2' where
Pi(·Xi, ICxi )), i=p,p+1 and p+2, are control points defined earlier. If
PpPp+IPp+2 is concave, then the slope of P p + 1 P p + 2 is smaller than that
of PpPp + I' which is already nonpositive (by our assumption on how I
changes its sign in I;,). This means .~' is nonpositive at both endpoints xl' + I

and x p + 2 , hence on the whole interval, and our claim follows.
On Jp we claim that s is either concave or decreasing. An argument

similar to the above shows this is true on the interval Up, X I' + 1]. If s is
convex on II" where it is a parabola, then it must be decreasing on
[.xp , xp + ,] eJp , and therefore it is decreasing on whole Jp •

Now if x p + 1 ~ Yj ~ .Xp + 1, then these two claims together with s(xp ) ~ 0,
s(Yj)=O, and S(Xp+2)~0 (see (2.13)) imply that it is copositive with I
on Jp + 1 and that it is nonnegative on fl" If .xp<Yj<xp+ l , then the
above imply that s is copositive with I on Jp and that s is non-positive

on Jp + I '

Case 5. 0 ~ p ~ n - 2 and s(Yj) > O. The proof follows from Case 4 by
replacing I( x) by - I( 1 - x).

Now that we have shown that the modified spline s is copositive with I
on [0, 1], it remains to prove that it satisfies (I.l). By (2.15) it suffices to
show that

(2.17)

since then, (I.l) will follow from (2.11). But this is obvious since for all
cases in the modification we have lexl ~ C and
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In this section we will prove Theorem 2. We first establish two lemmas.

LEMMA I. There is a polynomial q ,,(x) of degree ~ 2n which is odd and
increasing in [- I, I] and such that

for

and

Iq,,(x)j ~ I,

q;,(X) ~ An,

B
q;,(X)~-2'

nx

for Ixj ~ I,

I
Ixi ~-,

n

I
for -< Ixl ~ I,

n

(3.1 )

(3.2 )

(3.3 )

where A and B are absolute constants.

Proo! Define

f< sin 2( (n/2) arccos( I - {2/2 l) I
q,,(x) :=c" . ) I 2 dt--,

1 sin-2:arccos(l-t 12) 2

where

c- 1:= JI sin2.((~/2) arccos(1 -,t2/2l) dt.
" -1 sm- 4arccos( 1- {-/2)

-1~x~l,

It is readily seen that c" - n 1 and that q" is a polynomial of degree ~ 211
which is odd and increasing in [ - I, 1] and satisfies (3.1). Also,

. sin 2((n/2) arccos(l - x 2/2))
q"(x)=c,, . 21 )'2) ,sm 2: arccos( 1 - x-I

-l~x~1.

If Ixl ~ lin, then (nI2) arccos( 1- x 2/2) ~ n12, so that applying 20ln ~ sin 0,
o~ e~ n/2, it follows that

sin2( (11/2) arccos( I - x 2/2))

sin2 4arccos(l- x 2/2)

(
(2/n)(n/2) arCCOS(I-x2/2))2 _~ 2

~ 1 ? - ,n.
2: arccos( I - x-12) n-

Thus

q;,(x) ~ An.
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If lin ~ Ixl ~ I, we have
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sin 2«nI2) arccos(1 - x 2/2» I B'
')1 2 ~ ) )~-::;sm- ;;:arccos(l-x /2) «(1/1t)arccos(l-x~/2)~ x~

and so

B
q;,(x) ~-2' I

nx

LEMMA 2. Let fEe I [0, I] and let Yo: = 0 < Y I < Y2 < ... < Yk < 1 =:
Yk+l' Denote b :=mino~i~k(Y'+'-Y')' and let r~ I. Then for each n~k

there exists a polynomial p" of degree ~ n such that

i = 1, 2, ..., k,

Ilf - p,,11 ~ Cn 'wAI', lin),

and

III' - p~11 ~ Cw,U', lin),

where C depends only on k, r, and b.

(3.4)

(3.5)

(3.6)

Prool Since IE C 1[0, I], it is well known that there is a polynomial .0"
of degree ~ n, which simultaneously satisfies

11/- .0,,11 ~ Cn-1wlf', lin),

and

III' - .o~11 ~ Cw,U', lin).

(We are applying here a very weak version of the estimates for
simultaneous approximation by polynomials. It seems that such estimates
involving OJ, with r~ 2 first appeared in a paper by Gopengauz [gop],
who claims that they follow from a result of Brudnyi using some ideas of
Trigub.) Now define p,,(x) := .o,,(x) + .odx), where Pk is the polynomial of
degree k-l interpolating f(x)-.o,,(x) at Yi U=I,2, ... ,k). Then p" has
the deisred properties. I

We are ready to prove Theorem 2.

Proof of Theorem 2. Given any fixed n> C1 lJ - I, where C1 is a constant
still to be prescribed, we shall show that there exists a polynomial P"
copositive with f of degree ~ 2kn, satisfying (1.2). It is then a standard
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thing to obtain a polynomial of degree n satisfying (1.2). Let p" be the
polynomial from Lemma 2 and set

k

PAx):=p,.(x)+8DCn- 1w,(f', lin) n qn(X-Yi)' (3.7)
i= I

where q" is given in Lemma I, [; = sgn f(x) for x E (Yk> I), C is the constant
in Lemma 2, and D is a positive constant to be determined later.

Since q" is odd, increasing and q;,(x)?: An for Ixl ~ lin, we have

Hence

/q,,(x)l?: A, Ixl > lin.

k [ I IJxrj U Yi--' Yi+- .
i~Inn

(3.8 )

Note that the second term on the right-hand side of (3.7) is copositive
withf If we take D>A k, then by (3.5) and ((3.8), we obtain

fix) P,,(x)?-o, (3.9)

On the other hand, it follows from (3.4) and (3.7) that

f(Yi) - P,,(y,) = 0, i= 1,2, ... , k. (3.10 )

We will show that if f changes from - to + at Yi' then

f'(x) - P~(x) ~ 0, (3.11 )

and if f changes from + to - at Yi' then

f'(x) - P;,(x)?: 0, (3.12)

Then, if f(x)~O for xE(Y,-l/n,y;) and f(x)?:O for '\'E(Y"Yi+1/n),
then by (3.10) and (3.11), there exists a number ~ between x and Yi such
that

f(x) - P,,(x) = [f(x) - Pn(x)] - [f(Yi) - Pn(Yi)]

=(x-yj)[f'(O-P~(O], (3.13)
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which gives
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and

f(x)-p,J\:)';:;:O,

On the other hand iff(x)):O for xE(y,-I/n,y,) and f(x),;:;:O for
XE(y" y,+ l/n), then by (3.12) and (3.13), we have

and

f(x) - PI/(x)): 0,

Therefore, for x E U7~ I [Yi ~ I/n, Yi + I /n], we either have PI/(x)): I(x) ): 0
or PI/(x) ~f(x) ~ 0, i.e.,

f(x) P I1(x)): 0, (3.14)

To this end, we will show that for D > 2A\ (3.11) and (3.12) hold. We
have

P;,(x) = p;,(x) + cDCn- lwrlf', lin) (h ql/(x- y))' (3.15)
I~ I

and

(

k )' k
}]\ ql/(x - Yj) = q;,(x - y,) }]\ ql/(x - J'i)

i oF;

(3.16 )

By (3.2) and the analogue of (3.8) for k -I, it follows that

(3.17 )
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(3.18 )

Also by (3.1) and (3.3), for XE Lv,-1/n, Yi+ I/nJ and n> 3/r5 we have

k B B(k - 1) 9Bk
II2(x)1 ~ i~1 nix - yy ~ n(2r5/3 )2 ~ 4n r52"

j#i

Now let C, := max(3, 3 v/Bk/2Ak). Since n> C 1 b ',then by (3.17) and
(3.18),

9Bk 1 k

II2(x)1 ~ 4 c' 2 ~-2 A n,n ,n
and

(3.19)

Hence, if n > C, r5 'and D> 2A \ the second term in the right-hand side
of (3.15) has an absolute value greater than CwrU', l/n). Thus by (3.6), the
sign of {'(x) - P;,(x) is determined by the sign of

k

-r.q;,(x- .1',) n q,,(x- .1').
i~ ,
j~j

Since

q;,(X - y,) ?: °
and

sgn[c; h q,,(X-y;)]=sgn/(x)
I~ J

for XE [0, IJ, we have

sgn [-t:q;,(X - y,) nq,,(x - Yi)] = sgn[ -q,,(x - Yi) f(x)J,
I~ J
ii'i

and (3.11) and (3.12) follow. Combining (3.9) and (3.14) we see that P"
and / are copositive in [0, 1]. It is clear from our proof that the constant
C 2 such that (1.2) holds depends only on k, r, and r5. This completes the
proof. I
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